
 

Curriculum Overview for Computer Science 
Year 11 

 
Half Term 4 
Logic, Defensive Design and Testing 
 
Substantive Knowledge: 

• Understand why logic is important in 
computer programming 

• Understand what AND means 

• Understand what OR means 

• Understand what NOT means 

• Understand what a Truth Table is used 
for 

• Understand how to combine logic gates 
into a logic diagram 

• Understand the purpose of testing 

• Understand the purpose of iterative 
testing 

• Understand the purpose of 
final/terminal testing 

• Understand the types of errors that 
happen in programming 

• Understand the concept of test data 

• Understand the need for boundary test 
data 

• Understand the need for Erroneous test 
data 

• Understand the concept of defensive 
design 

• Understand why a program may be 
misused 

• Understand the need for authentication 

• Understand the need for code 
maintainability 

• Understand the use of subprograms 

• Understand the difference between a 
subroutine and a function 

• Understand the need for naming 
conventions 

• Understand the need for indentation 

• Understand the need for comments 

 
Disciplinary Knowledge: 

 

 

Model reading 
Reading out loud 
Skim and Scan of source 
information 
Decoding terms 
Etymology of key terms 

 

 

Logic 
AND gate 
OR gate 
NOT gate 

Truth Table 
Logic diagram 
Testing 
Iterative Testing 
Terminal Testing 
Errors 
Syntax Errors 
Runtime Errors 
Logic Errors 
Normal Data 
Boundary data 
Erroneous data 
Defensive Design 
Misuse 
Authentication 
Maintainability 
Subprograms 
Subroutine 
Function 
Arguments 
Naming Convention 
Camel Case 
Snake Case 
Indentation 
Comments 

 

 

Formative assessment 
Knowledge checks 
Smart Revise 
Practice questions 
Summative assessment 
End of unit assessment 



 

• Be able to identify the gate symbols for 

AND, OR and NOT gates 

• Be able to complete a truth table 

for each gate 

• Be able to produce a logic diagram 

• Be able to complete a truth table 

for a logic diagram 

• Be able to identify syntax errors, 
runtime errors and logic errors 

• Be able to identify Normal, Boundary 
and Erroneous test data 

• Be able to design a program anticipating 
misuse 

• Be able to design a program to include 
authentication 

• Be able to write a program that includes 
a subroutine 

• Be able to run a subroutine 

• Be able to write a program that includes 
a function 

• Be able to run a function 

• Be able to include arguments into 
subprograms 

• Be able to comment code in Python 

 

 

 

Practice questions 
Revision tasks 
Research tasks 

 


